[Total No. of Questions - 9] [Total No. of Printed Pages - 3]

Dec.-22-0108

MA-202 (Engineering Mathematics-II) B. Tech. 2nd (CBCS)

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question from each section A, B, C and D. Question no. 9 is compulsory.

SECTION - A

- 1. (a) Solve the differential equation $(x + y + 1)^2 \frac{dy}{dx} = 1$. (5)
 - (b) Solve $(xy^2 + y)dx + (x x^2y) dy = 0$ (5)
- 2. (a) Solve $(x^2D^2 xD + 1)y = \left(\frac{\log x}{x}\right)^2$ (5)
 - (b) Solve $\frac{d^2y}{dx^2} + a^2y = \sec ax$ by the method of variation of parameters. (5)

SECTION - B

- 3. Find the general solution in series solution of powers of x of the differential equation $4x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = 0$ (10)
- 4. State and prove the orthogonal property of Bessel's function. (10)

SECTION - C

5. (a) Find the Laplace transform of the function defined as

$$f(t) = |t - 1| + |t + 1| + |t + 2| + |t - 2|, \quad t \ge 0$$
 (5)

- (b) Find the inverse Laplace transform of $\frac{s^2 + s}{(s^2 + 1)(s^2 + 2s + 2)}$ (5)
- 6. (a) Evaluate $\int_{0}^{\infty} \frac{\cos 6t \cos 4t}{t} dt$ (5)
 - (b) Solve the differential equation using Laplace transform

method
$$\frac{d^2x}{dt^2} + 9x = \cos 2t$$
, $x(0) = 1$, $x(\frac{\pi}{2}) = -1$ (5)

SECTION - D

- 7. (a) Find the Fourier series of $f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ x^2, & 0 \le x \le \pi \end{cases}$ (5)
 - (b) Find the half range cosine series for the function $f(x) = x \sin x$ in the interval $(0, \pi)$. (5)

8. Solve
$$(2D_x^2 - 5D_xD_y + 2D_y^2)z = 5\sin(2x + y)$$
 (10)

SECTION - E (Compulsory question)

- 9. (a) Solve $ydx xdy + 3x^2y^2e^{x^3} = 0$
 - (b) Define Particular integral.

[P.T.O.]

- (c) Define singular point of a differential equation.
- (d) Define Bessel's function of first kind.
- (e) Prove that $\int x J_0(x) dx = x J_1(x)$.
- (f) State and prove first shifting theorem for Laplace transform.
- (g) Given that $L\left\{2\sqrt{\frac{t}{\pi}}\right\} = \frac{1}{s^{3/2}}$, show that $L\left\{\frac{1}{\sqrt{\pi t}}\right\} = \frac{1}{\sqrt{s}}$.
- (h) Find the Laplace transform of Unit step function. (8×2½=20)